Video Lecture

Theory For Making Notes

Introduction

We know when the velocity of a body changes at a constant rate its acceleration is said to be constant. Similarly when the velocity of a body  changes at a non uniform rate, that means the velocity changes by different amount in same time interval the acceleration of the body is said to be non uniform or variable. It happens when the acceleration changes with either Time or Position .

Acceleration  given as a Function of Time a = f(t)

Here,               a = \frac{{dv}}{{dt}}=f\left( t \right)

\int\limits_{u}^{v}{{dv}}=\int\limits_{0}^{t}{{f\left( t \right)}}dt

or               v = u + \int\limits_{0}^{t}{{f\left( t \right)dt}}

This gives v as a function of time t i.e. we get

                  v = g(t), then

                  v = \frac{{dx}}{{dt}}=g\left( t \right)

\int\limits_{{{{x}_{o}}}}^{x}{{dx}}=\int\limits_{0}^{t}{{g\left( t \right)dt}}

or               x = xo+ \int\limits_{0}^{t}{{g\left( t \right)dt}}.            This gives x as a function of time.

Illustration

The acceleration of a particle is given by a = 4t – 30, where a is in m/s2 and t is in s. Determine the velocity and displacement as functions of time. The initial displacement at  t = 0 is –5m, and the initial velocity is 3 m/s.

Solution

a = \displaystyle \frac{{dv}}{{dt}} = 4t – 30

dv= (4t – 30)dt

\displaystyle \int\limits_{3}^{v}{{dv}}=\int\limits_{0}^{t}{{\left( {4t-30} \right)dt}}

Þ     v – 3 = 2t2 – 30 t

or      v = 3 – 30t + 2t2   m/s

Now v = \displaystyle \frac{{dx}}{{dt}} = 3 – 30 t + 2t2

dx= (3 – 30t + 2t2)dt

\displaystyle \int\limits_{{-5}}^{x}{{dx}}=\int\limits_{0}^{t}{{\left( {3-30t+2{{t}^{2}}} \right)dt}}

x + 5 = 3t – 15t2 + \frac{2}{3}t 3

or      x = -5 + 3t – 15t2 + \frac{2}{3}t 3  m

Acceleration  as a Function of position i.e. a = f(x)

Here         a = \displaystyle v\frac{{dv}}{{dx}}=f\left( x \right)

\displaystyle \int\limits_{u}^{v}{{vdv}}=\int\limits_{{{{x}_{o}}}}^{x}{{f\left( x \right)dx}}

or      v2   =  u2 + 2 \displaystyle \int\limits_{{{{x}_{o}}}}^{x}{{f\left( x \right)dx}}

This gives v = g(x), a function of x. Now we can substitute  \displaystyle \frac{{dx}}{{dt}}=v, separate variables, and integrate

\displaystyle \int\limits_{{{{x}_{o}}}}^{x}{{\frac{{dx}}{{g\left( x \right)}}=\int\limits_{0}^{t}{{dt}}}}                or         t = \displaystyle \int\limits_{{{{x}_{o}}}}^{x}{{\frac{{dx}}{{g\left( x \right)}}=\int\limits_{0}^{t}{{dt}}}}

Which gives t as a function of x. Finally, we can rearrange to get x as a function of t.

Illustration

The relation between time t and distance x is t = ax2 + bx where a and b are constant. The acceleration is

(a)  – 2abv2                  

(b)    2 bv3                                 

(c)  –2 av3     

(d)   2 av2

Solution

(c)     t = ax2 + bx                         or        \displaystyle \frac{{dt}}{{dx}}=2ax+b

or      \displaystyle v=\frac{{dx}}{{dt}}=\frac{1}{{2ax+b}}

differentiating again w.r.t. time t, we get acceleration

            a=  \displaystyle \frac{{dv}}{{dt}}=\frac{{-2a}}{{{{{(2ax+b)}}^{2}}}}\frac{{dx}}{{dt}}=\frac{{-2a}}{{{{{(2ax+b)}}^{3}}}}=-2a\,{{v}^{3}}.

 

Acceleration  given as a Function of Velocity, a = f(v)

Here a = \frac{{dv}}{{dt}}=f\left( v \right)

\displaystyle \int\limits_{0}^{t}{{dt}}=\int\limits_{u}^{v}{{\frac{{dv}}{{f\left( v \right)}}}}

This gives t as a function of v. Then it would be necessary to solve for v as a function of t so that equation v = \frac{{dx}}{{dt}} can be integrated to obtain position coordinate x as function of time t.

Alternatively,

a = \displaystyle v\frac{{dv}}{{dx}}=f\left( v \right)

\displaystyle \int\limits_{u}^{v}{{\frac{{vdv}}{{f\left( v \right)}}=\int\limits_{{{{x}_{o}}}}^{x}{{dx}}}}

or      x = xo+ \displaystyle \int\limits_{u}^{v}{{\frac{{vdv}}{{f\left( v \right)}}}}

This equation gives x in terms of v without explicit reference to t.

Illustration

A particle moves in a straight line with deceleration whose modulus depends on the velocity v of the particle as a = a \displaystyle \sqrt{v},  where a is a positive constant. The initial velocity of the particle is vo. What distance will it traverse before it stops. What time will it take to cover that distance?

Solution

Here   a = \displaystyle \frac{{dv}}{{dt}} = –av1/2

\displaystyle \int\limits_{{{{v}_{o}}}}^{v}{{{{v}^{{-1/2}}}}}dv=-\alpha \int\limits_{0}^{t}{{dt}}                                   

or         2(v1/2v01/2) = –at                                        (1)

Let the particle come to rest at time T. Then at t = T, v = 0.

Equation (1) gives 2(0 – v01/2) = –aT

or         T = 2 \sqrt{{{{v}_{o}}}}/\alpha

Distance covered   s = \displaystyle \int\limits_{0}^{T}{{vdt}}=\int\limits_{0}^{T}{{\left( {v_{0}^{{1/2}}-\frac{1}{2}\alpha t} \right)dt=\frac{{2v_{{^{0}}}^{{3/2}}}}{{3\alpha }}}}

Illustration

The acceleration of a body is related to its velocity as a = kv2. If at x=0 the velocity of the body is 5m/sec. Find the relation of velocity with time t.

Solution

given \displaystyle a=k{{v}^{2}}

\displaystyle \Rightarrow \text{  }\frac{{dv}}{{dt}}=k{{v}^{2}}

\displaystyle \Rightarrow \text{  }\frac{{dv}}{{{{v}^{2}}}}=kdt

\displaystyle \Rightarrow \text{  }\int\limits_{5}^{v}{{\frac{{dv}}{{{{v}^{2}}}}=k\int\limits_{0}^{t}{{dt}}}}

\displaystyle \Rightarrow \text{  }\left[ {\frac{{{{v}^{{-2+1}}}}}{{-2+1}}} \right]_{5}^{v}=k\left[ t \right]_{0}^{t}

\displaystyle \Rightarrow \text{  -}\left[ {\frac{1}{v}} \right]_{5}^{v}=kt

\displaystyle \Rightarrow \text{  }\left[ {\frac{1}{v}-\frac{1}{5}} \right]=-kt

\displaystyle \Rightarrow \text{  }\frac{1}{v}=-kt+\frac{1}{5}

\displaystyle \Rightarrow \text{  }v=\frac{5}{{1-5kt}}

Remember that in the motion with variable acceleration, the graphs between different quantities depends on their mutual relation based on the situation given in the questions

Practice Questions (Basic Level)

1.

Choose the incorrect statement for non uniformly accelerated motion

(a) the position time graph may be  a parabola

(b) the position time graph may be a hyperbola

(c) the velocity time graph may be a parabola

(d) the velocity time graph may be  a hyperbola

Ans. (a)

2.

In a non uniform motion with nonuniform acceleration 

(a) The velocity may change but the speed may remains constant with time

(b) The acceleration and velocity both may change with time

(c) The acceleration may change with position of the body

(d) All of the above three options are correct

Ans.   (d)

3.

The position of  a body is given as x = 2t3 -3t2 -12t -2. (where t ≥0) . The acceleration of the body when the velocity is zero must be

(a) 12 m/sec2

(b) 10 m/sec2

(c)  18 m/sec2

(d)  14 m/sec2

Ans . (c) 

4.

In the previous question the time at which the velocity-time graph cuts the acceleration-time graph when drawn on the same diagram is

(a) 2.3 sec

(b) 3.3 sec

(c) 3.8 sec

(d) 6.6 sec

Ans.  (b)

5.

If the velocity of a body is given as v = 2t2 – 2t +1. And it is given at t=0 , x=4. Find the position of the body when acceleration is zero.

(a) 3/8

(b) 7/8

(c) 2/5

(d) 3/5

Ans. (b)

6.

The position x of a body is given by x = (u-2)t + 2(a+4)t2 + 10 . If at t=0 , velocity of body is 10m/sec, find u

(a) 10

(b) 16

(c) 12

(d) 18

Ans.  (c)

7.

In the previous question assuming `a’ to be greater than 0, then the graph between acceleration and time is 

(a) A straight line parallel to time axis cutting acceleration axis at `a’

(b) A straight line with positive slope 

(c) A parabola symmetrical to time axis

(d) A straight line parallel to time axis

Ans.  (d)

8.

Which of the follwing relation does not represent a non uniformly accelerated motion.

x = position , t = time , v = velocity , a = acceleration

(a) a = v.x

(b) x.v = t

(c) v2 = 4x

(d) a.x3 = 1

Ans.  (c)

9.

The acceleration of a body is given by a= 2t + 4. If at t=0 the position x=10 and velocity v=5. Then the relation for instantaneous velocity v(t) is given by

(a) t2 + 4t – 5

(b) t2 + 4t + 5

(c) 2t2 + 4t + 5

(d) t2 + 2t  + 5

Ans.  (b)

10.

In the previous question the relation between position and time is given by

(a) \displaystyle x=\frac{{{{t}^{3}}}}{3}+4{{t}^{2}}+10t+10

(b) \displaystyle x=\frac{{{{t}^{2}}}}{2}+3{{t}}+10

(c) \displaystyle x=\frac{{{{t}^{3}}}}{3}+2{{t}^{2}}+5t+10

(d) none

Ans.  (c)

 

Practice Questions (JEE Main Level)

1.

A body is moving along a straight line according to the law x = 16t – 6t2 where x is measure in metre and t in second. Find the acceleration of the body when x=2m.

(a)   13 ms2               

(b)   –12 ms2   

 (c)  12ms2               

(d)  –14 ms2

Ans.  (b)

2.

The relation between time t and distance x is t = a x2bx where a and b are constants. What is the magnitude of retardation if v is the velocity at any time t ?

(a)   \displaystyle 5\alpha {{v}^{3}}     

(b)   \displaystyle 3\alpha {{v}^{3}}     

(c)   \displaystyle 2\alpha {{v}^{3}}     

(d)    \displaystyle 4\alpha {{v}^{3}}

Ans.  (c)

3.

A particle starting from rest, moves in a straight line and its acceleration is given by a = 50 – 36t2 m/s2. Where t is in seconds. Determine the velocity of the particle when it has traveled 52 m and the time taken by it before it comes to rest again. ( given at t=0 , x & v=0 )

(a)  6 m/s; 2.04 second     

(b)  4 m/s; 2.04 second       

(c)  5 m/s; 3.04 second       

(d)  None of these

Ans.  (b)

4.

The acceleration of a particle is given by the relation a = 90 – 6x2, where a is expressed in cm/sec2 and x in centimeter. If the particle starts with zero initial velocity at position x = 0, determine the velocity when x = 5 cm and the position where velocity is maximum.

(a)   20 cm/s; 2.873 cm      

(b)  10 cm/s; 3.873 cm     

(c)  20 cm/s; 3.873 cm         

(d) 10 cm/s; 3.873 cm

Ans.  (c)

5.

During motion of a body in a viscous medium the acceleration is given by  \displaystyle a = A – Bv, where A and B are constants. The terminal velocity of the body is 

(a) B/A

(b) B + A

(c) A/B

(d) A.B

Ans.  (c)

6.

In a straight line motion the acceleration of a body is given  as  \displaystyle a\,=\,-\cos \,\,t\,\,,\,\,\,at\,\,\,t\,\,=0\,\,,\,\,\,\,u\,=\,0,\ and\,\,x\,\,=\,\,1. Find distance traveled by the body from t = 0 to t = 2p

(a)  1                     

(b)  2                                                       

(c)  3                       

(d)  4

Ans.  (d)

7.

A particle moves along a straight line so that its velocity at time t is given by \displaystyle v\left( t \right)={{t}^{2}}-t-6 (measured in meters per second). Find the displacement of the particle during the time period \displaystyle 1\le \,t\,\le \,4 and the distance traveled during this time period.

(a)   4.5 m, 10.17 m     

(b)   5.5 m, 10.20 m                       

(c)   3.5 m,  9.20 m         

(d)   5.6 m, 11.20 m

Ans.  (a)

8.

Find the position function  [x(t)] of a particle that moves with velocity \displaystyle v\,\left( t \right)=\cos \,\,\pi t along a straight line, assuming that at t = 0 , x = 4 .

(a) \displaystyle x\left( t \right)\,=\,\frac{1}{\pi }\,\,\sin \,\,\pi \,t\,-\,4                 

(b) \displaystyle x\left( t \right)\,=-\,\frac{1}{\pi }\,\,\sin \,\,\pi \,t\,+\,4     

(c) \displaystyle x\left( t \right)\,=\,\frac{1}{\pi }\,\,\sin \,\,\pi \,t\,+\,4       

(d) None of these

Ans.  (c)

9.

The velocity of a particle moving on the x-axis is given by v = x2 + x where v is in m/s and x is in m. Its acceleration in m/s2 when passing through the point x = 2m is

(a) 0                            

(b) 5                            

(c) 11                          

(d) 30

Ans.  (d)

10.

The position of a particle moving along a straight line is given by x = 3sin(pt), where t is in sec and x is in m. Find the distance (in cm) travelled by the particle from t =1/4sec to t =3/4sec. \left( {\sqrt{2}=1.4} \right)  

(a)175cm

(b)176cm

(c)172cm

(d)171cm

Ans.  (d) 

11.

The acceleration `a’  of a particle increases linearly with time t as a = 6t. If the initial velocity of the particle is zero and the particle starts from the origin, then the graph describing the motion of the particle is 

(a) a parabola on velocity vs time graph

(b) a straight line on acceleration vs time graph

(c) a cubical curve on position vs time graph

(d) all of the above

Ans.  (d)

Practice Questions (JEE Advance Level)

1.

The equation \sqrt{x}=t+9 gives the variation of displacement with time. Which of the following is correct?

(a)  Velocity is proportional to the square of time 

(b)  Velocity is inversely proportional to time

(c)  Acceleration depends on time                   

(d)  Acceleration is constant

Ans.   (d)

2.

A particle having velocity v = v0 at t = 0 is decelerated at the rate \displaystyle |a|=\alpha \sqrt{v}, where a is a positive constant. After what time and distance will the particle come to rest?

(a)   \displaystyle t\,=\,\frac{{3\sqrt{{{{v}_{0}}}}}}{\alpha },\,\,s\,=\,\left( {\frac{2}{3}} \right)\,\frac{{v_{0}^{{3/2}}}}{\alpha }     

(b)    \displaystyle t\,=\,\frac{{2\sqrt{{{{v}_{0}}}}}}{\alpha },\,\,s\,=\,\left( {\frac{3}{2}} \right)\,\frac{{v_{0}^{{3/2}}}}{\alpha }     

(c)    \displaystyle t\,=\,\frac{{2\sqrt{{{{v}_{0}}}}}}{\alpha },\,\,s\,=\,\left( {\frac{2}{3}} \right)\,\frac{{v_{0}^{{3/2}}}}{\alpha }     

(d)    \displaystyle t\,=\,\frac{{4\sqrt{{{{v}_{0}}}}}}{\alpha },\,\,s\,=\,\left( {\frac{2}{3}} \right)\,\frac{{v_{0}^{{3/2}}}}{\alpha }

Ans.  (c)

 3.

The motion of body falling from rest in a resisting medium is described by the equation \displaystyle \frac{{dv}}{{dt}}=A-Bv, where A and B are constants. Calculate the initial acceleration and the velocity at any instant of time.

(a)   A,  \displaystyle v=\frac{A}{B}\left( {1-{{e}^{{-Bt}}}} \right)     

(b)   A,  \displaystyle v=\frac{A}{B}\left( {1+{{e}^{{-Bt}}}} \right)     

(c)   A,  \displaystyle v=-\frac{A}{B}\left( {1-{{e}^{{-Bt}}}} \right)     

(d)   A,  \displaystyle v=\frac{A}{B}\left( {1-{{e}^{{Bt}}}} \right)

Ans.  (a)

4.

The position of a particle along a straight line is given by \displaystyle x=9{{t}^{2}}-{{t}^{3}}+15t, here t is in seconds. Three statements are given regarding the motion of this particle, 

Statement : 1 

The maximum velocity of particle is 36m/sec at t = 6 sec

Statement : 2

Between t = 0 and t = 3 the maximum acceleration is 18 m/sec2

Statement : 3 

The maximum velocity of particle is 42m/sec at t = 3 sec

read the statements carefully and choose the correct option given below

(a) Statement 1 is correct and 3 is wrong

(b) Statement 2 is wrong

(c) Statement 3 is wrong

(d) Statement 2 and 3 are correct

Ans.  (d)

5.

The acceleration of a particle is given by a\mathbf{(t)}=\mathbf{(3}\mathbf{.00}\,\mathbf{m/}{{\mathbf{s}}^{\mathbf{2}}}\mathbf{)}-\mathbf{(2}\mathbf{.00}\,\mathbf{m/}{{\mathbf{s}}^{\mathbf{2}}}\mathbf{)t}. Find the initial speed  such that the particle will have the same x–coordinates at t = 5.00 s as it had at t = 0.

(a) 0.56 m/s                 

(b) 6.8 m/s                          

(c) 0.833m/s                 

(d) 30.95 m/s

Ans : c

6.

In the previous question , What will be the velocity at t = 5.00 s?

(a)  -8.56 m/s         

(b) -6.8 m/s                         

(c) -10.833m/s       

(d) -9.17m/s

Ans.  (d)

7.

A particle moves along a horizontal path such that its velocity is given by v=(3{{t}^{2}}-6t)\,\mathbf{m/s}, where t is the time in second. If it is initially located at the origin O, the distance traveled by the particle during the time interval t=0 to t=3.5\,\mathbf{s}

(a) 18.56 m             

(b) 14.125 m                           

(c) 20.833m             

(d) 9.17m

Ans.  (b)

8.

In the previous question , determine the particle’s average velocity and average speed during this time interval (t=0 tot=3.5s)

(a) 18.56 m/s , 24m/sec       

(b) 1.75 m/s, 4.0 m/s      

(c) 4.75 m/s, 6.25 m/s           

(d) 9.17m/s, 14.36m/s

Ans.  (b)

9.

A  cone falling in inverted position with a speed {{v}_{0}} strike and penetrates the muddy floor. The acceleration of the cone after impact is a=g-c{{h}^{2}}, where c is a positive constant and h is the penetration distance. If the maximum penetration depth is observed to be {{h}_{m}}, then the value of  constant c must be

(a) \left( {\frac{{3g}}{{h_{m}^{2}}}+\frac{{3v_{o}^{2}}}{{2h_{m}^{3}}}} \right)

(b) \left( {\frac{{5g}}{{h_{m}^{2}}}+\frac{{3v_{o}^{2}}}{{7h_{m}^{3}}}} \right)

(c) \left( {\frac{{7g}}{{h_{m}^{2}}}+\frac{{v_{o}^{2}}}{{7h_{m}^{3}}}} \right)

(d) \left( {\frac{{2g}}{{h_{m}^{2}}}+\frac{{9v_{o}^{2}}}{{2h_{m}^{3}}}} \right)

Ans : a

10.

For a body if x2 + x – v = 0 is the relation between position x and velocity v, then the relation among position x,velocity v and accelearion a must be

(a)  ax – v2x +v = 0

(b) x2v + v2 + ax = 0

(c) x2v + v2 – ax = 0

(d) ax – vx2 + v = 0

Ans.  (c)

 

 11.

A particle starts moving rectilinearly at time t = 0 such that its velocity v changes with time t according to the equation v = t2t where t is in seconds and v is in m/s. The time interval for which the particle retards is

(a) t < 1/2                       (b) 1/2 < t < 1   

(c) t > 1                           (d) t < 1/2 and t > 1

Ans.  (b)

12.

The displacement s travelled by a body in time t is given by s=\frac{a}{t}+b{{t}^{2}}, where a and b are positive constants. Choose the correct statement about this body

(a) Initially the acceleratio of the body is negative and its velocity is positive

(b) at \displaystyle t={{\left( {\frac{a}{{2b}}} \right)}^{{1/3}}} the acceleration is negative and velocity is zero

(c) for   \displaystyle t > {{\left( {\frac{a}{{2b}}} \right)}^{{1/3}}} the acceleration and velocity both are positive 

(d) at \displaystyle t={{\left( {\frac{a}{{2b}}} \right)}^{{1/3}}} the acceleration is -6b

Ans.  (c)

 13.

A body moves in a straight line along Y–axis. Its distance y (in metre) from the origin is given by y=8t-3{{t}^{2}}. The average speed in the time interval from t = 0 second to t = 1 second is

 (a)  -\mathbf{4}\,\,\mathbf{m}{{\mathbf{s}}^{{-\mathbf{1}}}}

(b)  Zero    

(c)  \mathbf{5}\,\,\mathbf{m}{{\mathbf{s}}^{{-\mathbf{1}}}}   

(d)  \mathbf{15}\,\,\mathbf{m}{{\mathbf{s}}^{{-\mathbf{1}}}}

Ans.  (c)

14.

In the privious question what is the ratio of the average velocity and average speed over a time from t=0 to t=2 sec

(a)  \displaystyle \frac{1}{5}

(b)  \displaystyle \frac{2}{5}

(c)  \displaystyle \frac{4}{3}

(d)  \displaystyle \frac{3}{5}

Ans.  (d)