Video Lecture
Theory For Making Notes
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
Practice Questions (Level-1)
Q.1
A simple harmonic motion is given by the equation x = 3 sin 3 p t + 4 cos 3 p t where x is in metres. The amplitude of the motion is
(a) 3 m (b) 4 m (c) 5 m (d) 7 m
Ans : (c)
Q.2
A particle is subjected to two mutually perpendicular SHM such that x = 2 sin wt and y = 2 sin [wt + (p/4). The path of the particle will be:
(a) An ellipse
(b) A straight line
(c) A parabola
(d) A circle
Ans. (a)
Q.3
Equation of a simple harmonic motion is given as
x = 3 sin 20pt + 4 cos 20 pt
where x is in cms and t in seconds. The amplitude is:
(a) 7 cm (b) 4 cm (c) 5 cm (d) 3 cm
Ans. (C)
Q.4
The composition of two simple harmonic motions of equal periods at right angle to each other and with a phase difference of p results in the displacement of the particle along
(a) circle (b) figure of eight (c) straight line (d) ellipse
Ans. (c)
Q.5
A particle is subjected to two mutually perpendicular simple harmonic motions such that its x and y coordinates are given by
\displaystyle \frac{{{{d}^{2}}}}{{2D\lambda }} The path of the particle will be
(a) a straight line (b) a circle (c) an ellipse (d) a parabola
Ans. (c)
Q.6
Two simple harmonic motions A and B are given respectively by the following equations
\displaystyle \frac{1}{{2\pi \sqrt{{LC}}}}
\displaystyle [{{M}^{0}}{{L}^{1}}{{T}^{{-1}}}]
The phase difference between the waves is
(a) \displaystyle [{{M}^{0}}{{L}^{0}}{{T}^{{-1}}}]
(b) \displaystyle [{{M}^{0}}{{L}^{0}}{{T}^{1}}]
(c) \displaystyle 2.5\times {{10}^{{-4}}}\text{cm}
(d) zero
Ans. (c)
Practice Questions (Level-2)
Q.1
A point moves in the plane XY according to the law x = a sin wt and y = b cos wt, where a, b and w are positive constants. Find the trajectory equation y(x) of a point and the direction of its motion along this trajectory,
(a) \displaystyle \frac{{{{x}^{2}}}}{{{{a}^{2}}}}+\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1
(b) \displaystyle \frac{{{{x}^{2}}}}{{{{a}^{2}}}}-\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=1
(c) \displaystyle \frac{{{{x}^{2}}}}{{{{a}^{2}}}}+\frac{{{{y}^{2}}}}{{{{b}^{2}}}}=2
(d) None
Ans : (a)
Q.2
The number of harmonic components in the oscillation represented by y = 4 cos2 2t sin 4t and their corresponding angular frequencies are:
(a) there; 2 rad/s, 4 rad/s, 8 rad/s
(b) two; 2 rad/s, 4 rad/s
(c) two;4 rad/s, 8 rad/s
(d) two; 2 rad/s, 8 rad/s
Ans. (c)
Q.3
A particle of mass m is attached to a spring (of spring constant k) and has a natural angular frequency w0. An external force F(t) proportional to cos wt (w ¹ w0) is applied to the oscillator. The time displacement of the oscillator will be proportional to:
(a) {{\sin }^{{-1}}}(\lambda /d)
(b) {{\sin }^{{-1}}}(\lambda /2d)
(c) {{\sin }^{{-1}}}(\lambda /3d)
(d) {{\sin }^{{-1}}}(\lambda /4d)
Ans. (b)
Q.4
When a damped harmonic oscillator completes 100 oscillations, its amplitude is reduced to 1/3 of its initial value. What will be its amplitude when it completes 200 oscillations:
(a) 1/5 (b) 2/3 (c) 1/6 (d) 1/9
Ans. (d)
Q.5
A particle, with restoring force proportional to displacemtn and resisting force proportional to velocity is subjected to a force F sin w If the amplitude of the particle is maximum for w = w1 and the energy of the particle is maximum for w = w2, then
(a) w1 = w0 and w2 ≠ w0
(b) w1 = w0 and w2 = w0
(c) w1 ≠ w0 and w2 = w0
(d) w1 ≠ w0 and w2 ≠ w0
Ans. (c)
Q.6
A point moves in the plane XY according to the law x = a sin wt and y = b cos wt, where a, b and w are positive constants the acceleration of the point as a function of its radius vector r relative to the origin of coordinates must be
(a) \displaystyle \vec{a}=\omega \vec{r}
(b) \displaystyle \vec{a}={{\omega }^{2}}\vec{r}
(c) \displaystyle \vec{a}=2{{\omega }^{2}}\vec{r}
(d) None
Ans :(b)
Q.7
Find the trajectory equation y(x) of a point if it moves according to the following laws
x = a sin wt and y = a sin 2 wt
(a) \displaystyle y=\frac{{2x\sqrt{{{{a}^{2}}+{{x}^{2}}}}}}{a}
(b) \displaystyle y=\frac{{4x\sqrt{{{{a}^{2}}-{{x}^{2}}}}}}{a}
(c) \displaystyle y=\frac{{2x\sqrt{{{{a}^{2}}-{{x}^{2}}}}}}{a}
(d) None
Ans : (c)
Q.8
The displacement equation of a particle is
x = 3 sin 2t + 4 cos 2t
The amplitude and maximum velocity will be respectively:
(a) 5, 10 (b) 3, 2 (c) 4, 2 (d) 3, 4
Ans. (a)
Q.9
Lissajous figure obtained by combining
x = a sin w t and \displaystyle \pi {{\cos }^{{1}}}\frac{4}{5}
will be:
(a) An ellipse (b) A straight line (c) A circle (d) A parabola
Ans. (a)
Q.10
The phase difference between the two simple harmonic oscillations
\displaystyle \frac{1}{2},\,\,\frac{1}{2} and \displaystyle \frac{1}{2},\,\,\frac{1}{2} is:
(a) \displaystyle \frac{1}{2},\,\,\frac{1}{2}
(b) \displaystyle \frac{1}{2},\,\,\frac{1}{2}
(c) \displaystyle A=\hat{i}+4\hat{j}2k\,\,and\,\,B=3\hat{i}5\hat{j}+k
(d) \displaystyle 4\hat{i}\hat{j}k
Ans. (c)