Video Lecture

Theory For Making Notes

Periodic Motion:

Any motion, which repeats itself after regular interval of time is called periodic or harmonic motion

Example:

(i) Motion of the hands of a clock

(ii) Motion of the earth around the sun

(iii) Motion of the piston in a cylinder

(iv) Motion of the ball in a bowl

(v) Motion of the liquid in a U-tube.

Oscillatory/Vibratory Motion:

If in the case of periodic motion, the particle moves back and fourth (or to and fro) about at an equilibrium point. Then, the motion is said to be oscillatory.

 Example: 

(i) Motion of the balance wheel of a watch.

(ii) Motion of the needle of a serving machine.

(iii) Motion of the molecules in a solid around fixed littice sites.

(iv) Vibrations of the prongs of a tuning fork.

S.H.M:

If in the case of oscillatory motion a particle moves back and forth (or up and down) about a fixed point (called equilibrium position) via, a force or torque (called restoring force or torque), which is directly proportional to the displacement and opposite in direction to the displacement from equilibrium is called simple harmonic.

 Example: 

(i) Conical pendulum

(ii) Spring pendulum

(iii)Simple pendulum

(iv) Physical pendulum

(v) Torsional pendulum

Consider a reference particle, moving on a circle of reference of radius , with uniform angular velocity \omega . Let the particle start from the point X and trace an angle \theta \theta radian in time  as it reaches the point P. Therefore, \displaystyle \omega =\theta /tor \theta =\omega t, Let the projection of the particle P on diameter \mathbf{YOY’} be at M. Then \mathbf{OM}=\mathbf{y}, is the displacement in S.H.M at time .

In \Delta OPM,\,\,\,\sin \theta =\frac{{OM}}{{OP}}=\frac{y}{a}

or            y=a\sin \theta =a\sin \omega t                            …(i)

Important Notes:

(a)      If projection of P is taken on diameter XOX’, then point N will be executing S.H.M. Here, ON=x=displacement in S.H.M at time

In \Delta ONP,\,\,\,\cos \theta =\frac{{ON}}{{OP}}=\frac{x}{a}

or        x=a\cos \theta =a\cos \omega t                       …(ii)

 

(b)          If A is the starting position of the particle of reference such that \angle AOX={{\varphi }_{o}} and \angle AOP=\omega t.

\theta =\angle XOP=\omega t-{{\varphi }_{o}}

From             (i) ,         y=a\sin (\omega t-{{\varphi }_{o}})

                     (ii),         x=a\cos (\omega t-{{\varphi }_{o}})

Here -{{\varphi }_{o}} is called the initial phase of epoch of S.H.M.

If B is the starting position of the particle of reference such that \angle BOX={{\varphi }_{o}} and \angle BOP=\omega t, then

\theta =\angle XOP=\omega t+{{\varphi }_{o}}

            From             (i),          y=a\sin (\omega t+{{\varphi }_{o}})

                                (ii),         x=a\cos (\omega t+{{\varphi }_{o}})

Here, +{{\varphi }_{o}} is called initial phase or epoch of SHM.

Parameters Of SHM          

 For a body executing SHM along x axis the equation of displacement is given by

x=a\sin (\omega t+\varphi )

The SHM can be defined in terms of following parameters or quantities.

(1)

Amplitude (a): It is defined as the maximum (positive or negative) value of displacement from equilibrium position. Since maximum and minimum values of sine function are +1 and –1, therefore it’s amplitude are + a and-a. Further, span of S.H.M is S=2a.

(2)

Time period (T): The smallest time interval after which the oscillation repeat itself is called its time period (T)\,,\,\,\,\,T=\frac{{2\pi }}{\omega }.

(3)

Frequency (f): The reciprocal of time period is defined as frequency, f=\frac{1}{T}=\frac{\omega }{{2\pi }} whereis ω angular frequency.

(4)

Phase: The term (\omega t+\varphi ) is term defined as phase of the oscillation.

(5)

Phase constant (\varphi ):

The constant (\varphi ) in the equation of SHM is called epoch or initial phase.

Equation Of Velocity and Acceleration for a body in SHM

One very important distinctive feature of SHM is the relation between the displacement, velocity and acceleration of oscillatory particle.

x = asin ωt                        

v = \frac{{dx}}{{dt}} = ωacos ωt = ωa sin (ωt + \frac{\pi }{2})

acceleration ac \frac{{{{d}^{2}}x}}{{d{{t}^{2}}}}= – ω2a sin ωt = ω2a sin (ωt + p)    

Notice that the maximum displacement is a, the maximum speed is ωa, and the maximum acceleration is ω2a.

The displacement, velocity and acceleration versus time graphs have been plotted in figure given below

The velocity function is π/2 ahead of the displacement function and the acceleration function is π/2 ahead of the velocity function.

Relation Between Velocity and Displacement

We know that

x = a sin ωt                 

hence \displaystyle \sin \omega t=\frac{x}{a}                            (1) 

also  v= \frac{{dx}}{{dt}} = ωa cos ωt(2)

but \displaystyle \cos \omega t=\sqrt{{1-{{{\sin }}^{2}}\omega t}}=\sqrt{{1-\frac{{{{x}^{2}}}}{{{{a}^{2}}}}}}  (Using equation (1) 

On putting the above value of cos ωt in equation (2) we get the equation of velocity

\displaystyle v=\omega a\sqrt{{1-\frac{{{{x}^{2}}}}{{{{a}^{2}}}}}}

hence finally we get       \displaystyle v=\omega \sqrt{{{{a}^{2}}-{{x}^{2}}}}.

To get the equation of acceleration just differentiate equation (2) with respect to time and substitute the value of sin ωt from equation (1) .

we know v = ωa cos ωt      from equation no.(2)

on differentiating we get  acceleration  ac \frac{{{{d}^{2}}x}}{{d{{t}^{2}}}}= – ω2a sin wt         

hence \displaystyle {{a}_{c}}=-{{\omega }^{2}}a.\frac{x}{a}

and  finally we get                                  ac = – ω2x

Remember :

S. No

Physical Quantity

At Equilibrium Position

At Extreme Position

1.

Displacement  x =a\sin \,\omega t

Minimum =0

Maximum=a

2.

Velocity =\omega \sqrt{{{{a}^{2}}-{{x}^{2}}}}

Maximum=ωa

Minimum=0

3.

Acceleration |a|={{\omega }^{2}}x

Minimum=0

Maximum ={{\omega }^{2}}a

Illustration

A particle executes simple harmonic motion of amplitude a and time period T. What is time (t) taken by it to move from mean position to half of amplitude.

Solution

\displaystyle y=a\sin \omega t

\displaystyle \frac{a}{2}=a\sin \omega t

\displaystyle \Rightarrow \omega t=\frac{\pi }{6}

\displaystyle \frac{{2\pi }}{T}t=\frac{\pi }{6}

\displaystyle t=\frac{T}{{12}}

 

Note:        If particle is going from extreme to mean position.

\displaystyle y=a\cos \omega t             or            \displaystyle \omega t=\frac{\pi }{3}

  \displaystyle \frac{a}{2}=a\cos \omega t             or            \displaystyle t=T/6\sec         

Illustration

A body of mass 1 kg is executing simple harmonic motion which is given by x = 6.0 cos (100 + π/4)cm. What is the (i) amplitude of displacement, (ii) frequency, (iii) initial phase, (iv) velocity, (v) acceleration, (vi) maximum kinetic energy?

Solution

The given equation of SHM is x = 6.0 cos (100 t + π/4) cm.

Comparing it with the standard equation of SHM, x = a cos (wt + ∅), we have

(i)        amplitude a = 6.0 cm

(ii)       frequency w = 100/sec.

(iii)      initial phase f =π/4

(iv)     velocity \displaystyle v=\omega \sqrt{{({{a}^{2}}-{{x}^{2}})}}=100\ \sqrt{{(36-{{x}^{2}})}}

(v)      acceleration \displaystyle =-{{\omega }^{2}}x=-{{(100)}^{2}}x=-{{10}^{4}}x

(vi)     kinetic energy \displaystyle =\frac{1}{2}m{{v}^{2}}=\frac{1}{2}m{{\omega }^{2}}({{a}^{2}}-{{x}^{2}})

When x = 0, the kinetic energy is maximum, i.e.,

(K.E.)max = \displaystyle \frac{1}{2}m{{\omega }^{2}}{{a}^{2}}

            \displaystyle =\frac{1}{2}\times 1\times {{10}^{4}}\times {{\left( {\frac{6}{{100}}\ } \right)}^{\text{2}}}\text{metre}

 

                     = 18 joules.

Illustration

Two particles execute SHM of same amplitude and frequency along the same straight line. They pass one another, when going in opposite directions, each time their displacement is half of their amplitude. What is the phase difference between them?

Solution

\displaystyle {{y}_{1}}= A sin wt and \displaystyle {{y}_{2}}= Asin (wt + f)

wheny = A/2, \displaystyle \sin \omega t=\frac{1}{2}

\displaystyle \text{And}\ A/2=A\sin \ (\omega t+\phi )

sin wt cos Φ + cos wt sin Φ \displaystyle =\frac{1}{2}.

Substituting the value of sin wt and cos wt, we get

 cosΦ – 1 = \displaystyle \sqrt{3} sin Φ

or        (cos Φ – 1)2 = 3 (1 – cos2 Φ)

Solving we get, \displaystyle \cos \phi =+1\ \text{or}\ -\frac{1}{2}.

When cos Φ = + 1, Φ = 0 (not acceptable).

\displaystyle \cos \phi =-\frac{1}{2},\ \phi =120{}^\circ .

Practice Questions (Level-1)

Q.1

What the equation of SHM with amplitude 8 cm and maximum particle speed 64p cm/s (where y is also in cm.)

(a) y = 64 sin 2 pt              

(b) y = 8 sin 8 pt                   

(c) y = 64 sin 8 pt                  

(d) y = 8 sin 64 pt

Ans : (b)

Q.2

A particle moves such that its acceleration is given by a = -b2 What is the period of oscillation

(a) 2p/b              (b) 2p/8b                 (c) b/2p                      (d) 2p/3b

Ans : (a)

Q.3

The displacement x (in centimeters) of an oscillating particle varies with time t (in seconds) as \displaystyle x=2\cos \left( {0.5\ \pi t+\frac{\pi }{3}} \right)The magnitude of the maximum acceleration of the particle in cms–2 is

(a)      \displaystyle \frac{\pi }{2}                    

(b)      \displaystyle \frac{\pi }{4}                    

(c)      \displaystyle \frac{{{{\pi }^{2}}}}{2}   

(d)      \displaystyle \frac{{{{\pi }^{2}}}}{4}

Ans : (c)

Q.4

Two SHM’s are respectively represented by y = a sin(wt – kx) and y = b cos(wt – kx). Then the phase difference between the two is

(a) p/2                  (b)   p/4                   (c) p/3                    (d) None

Ans : (a)

Q.5

A particle executes SHM. Its velocities are v1 and v2 at displacement x1 and x2 from mean position respectively. The frequency of oscillation will be:

(a)      \displaystyle 1000\sqrt{3}            

(b)      \displaystyle \frac{{2\sqrt{\beta }}}{{1+\beta }}                 

(c)      \displaystyle \begin{array}{l}\frac{2}{{\left( {1+\beta } \right)}}+\\\end{array}       

(d)      \displaystyle \frac{{\sqrt{\beta }}}{{1+\beta }}

Ans.  (b)

Q.6

Which of the following is a simple harmonic motion?

(a)  Ball bouncing between two rigid vertical walls

(b)  Particle moving in a circle with uniform speed

(c)   Wave moving through a string fixed at both ends

(d)  Earth spinning about its own axis

Ans.   (c)

Q.7

Which one of the following statements is true for the speed v and the acceleration a of a particle executing simple harmonic motion?

(a)  When v is maximum, a is maximum

(b)  Value of a is zero, whatever may be the value of v

(c)   When v is zero, a is zero

(d)  When v is maximum, a is zero

Ans.  (d)

Q.8

A particle executing simple harmonic motion of amplitude 5 cm has maximum speed of 31.4cm/s. The frequency of its oscillation is

(a)  3 Hz           (b)  2 Hz             (c)     4 Hz           (d)      1 Hz

Ans. (d)

Q.9

The phase (at a time t) of a particle in simple harmonic motion tells:

(a)  Only the position of the particle at time t

(b)  One the direction of motion of the particle at time t

(c)   Both the position and direction of motion of the particle at time t

(d)  Neither the position of the particle nor its direction of motion at time t

Ans. (c)

Q.10

The displacement of a particle executing SHM is given by y = 0.25 sin 200 t cm. The maximum speed of the particle is        

(a)    200 cm \displaystyle {{\in }_{0}}\,\,L\left( {\frac{{\Delta V}}{{\Delta t}}} \right),         

(b)    100 cm \displaystyle \rho =KL+\frac{{MI}}{\omega },             

(c)     50 cm \frac{{\Delta v}}{{\Delta z}}    

(d)     5.25 cm \eta A\frac{{dv}}{{dz}},

Ans.  (a)

Q.11

The displacement of a particle executing SHM is given by x = 0.01 sin 100 \displaystyle \eta (t + 0.05). The time period is     

(a) 0.01 s              (b)  0.02 s                     (c)   0.1 s                (d)      0.2 s

Ans.  (b)

Q.12

A body is vibrating in simple harmonic motion. If its acceleration is 12 cm/s2 at a displacement 3 cm from the mean position, then time period is

(a) 6.28 s              (b)  3.14 s                   (c)   1.57 s                  (d) 2.57

Ans.  (b)

Q.13

The average acceleration of a particle performing SHM over one complete oscillation is

(a)       \frac{\pi }{2}                                      

(b)       {{\cos }^{{-1}}}(0.6)                         

(c)        zero                               

(d)       {{\tan }^{{-1}}}\left( {\frac{7}{5}} \right)

Ans.  (c)

Practice Questions (Level-2)

Q.1

A rough horizontal table moves horizontally in SHM, the period being 3 s and the maximum speed 4 m/s. A small heavy mass is placed on the table. Then the least coefficient of friction if the mass does not slide on the table throughout the motion.

(a) m = 0.85                 (b)   m = 0.65            (c)  m = 0.55            (d) m = 0.25

Ans : (a)

Q.2

In how much time a particle will travel from its mean position to a displacement equal to half of its amplitude undergoing SHM with a time period of 2 seconds.

(a) 2/7s                                           

(b) \displaystyle \frac{1}{6}s                       

(c) 1/2s                                         

(d) 2/3s

Ans : (b)

Q.3

A person normally weighing 60 kg stands on a platform which oscillates up and down harmonically at a frequency 2.0 sec–1 and an amplitude 5.0 cm. If a machine on the platform gives the person’s weight against time, deduce the maximum and minimum reading it will show, take g = 10 m/sec2.

(a) Maximum reading = 20.3 kg, Minimum reading = 14.7 kg.

(b) Maximum reading = 107.3 kg, Minimum reading = 102.7 kg.

(c) Maximum reading = 107.3 kg, Minimum reading = 12.7 kg.

(d) None

Ans : (c)

Q.4

Two SHMs are given by y1 = a sin [(p/2)t + f] and \displaystyle \frac{3}{2}P The phase difference between these after 1 sec is:

(a)  p                     (b)  p/2                     (c)   p/4                       (d)  p/6

Ans.  (d)

Q.5

A body of mass 5 g is executing SHM about a point O with amplitude 100 cm. If its max. velocity is 100 cm/sec, its velocity will be 50 cm/sec at a distance (in cm):

(a)       5     

(b)        \displaystyle \frac{{f\mu \prime \left( {\mu 1} \right)}}{{\left( {\mu \mu \prime } \right)}}

(c)        \displaystyle \frac{{f\left( {\mu \prime \mu } \right)}}{{\mu \prime \left( {\mu 1} \right)}}

(d)        \displaystyle \frac{{\mu \prime \left( {\mu 1} \right)}}{{f\left( {\mu \prime \mu } \right)}}

Ans.  (c)

Q.6

A horizontal platform is made to execute SHM of amplitude a in the vertical direction. An object placed on the platform will lose contact with it, when the frequency of oscillation exceeds:

(a)      \displaystyle {{\sin }^{{1}}}\left( {\frac{8}{9}} \right)               

(b)      \displaystyle {{I}_{0}}\cos \left( {\frac{x}{\beta }} \right)      

(c)      \displaystyle {{I}_{0}}{{\cos }^{2}}\left( {\frac{x}{\beta }} \right)  

(d)      \displaystyle {{I}_{0}}{{\cos }^{2}}\left( {\frac{{\pi x}}{\beta }} \right)

Ans.  (b)

Q.7

A particle performs SHM along a straight line with the period T and amplitude A. The mean velocity of the particle averaged over the time interval during which it travels a distance A/2 starting from the extreme position is:

(a)        \displaystyle \left( {\frac{{{{I}_{0}}}}{4}} \right){{\cos }^{2}}\left( {\frac{{\pi x}}{\beta }} \right)               

(b)        \displaystyle \frac{\lambda }{{4(\mu -1)}}

(c)        \displaystyle \frac{\lambda }{{2(\mu -1)}}                        

(d)        \displaystyle \frac{\lambda }{{\mu -1}}

Ans.  (d)

Q.8

The time period and the amplitude pendulum are 4 second and 0.20 metre respectively. If the displacement is 0.1 m at time t = 0, the equation of its displacement is represented by:

(a)  y = 0.2 sin (0.5pt)                                                    

(b)  y = 0.2 sin (0.5pt)        

(c)   y = 0.1 sin (pt + p/6)                                               

(d)  y = 0.1 sin (0.5pt)

Ans.  (b)

Q.9

The function sin2 (wt) represents:

(a)  A periodic, but not simple harmonic motion with a period \displaystyle \sqrt{{\frac{{3\lambda D}}{2}}}

(b)  A periodic, but not simple harmonic motion with a period \displaystyle \sqrt{{\lambda D}}

(c)   A simple harmonic motion with a period \displaystyle \sqrt{{\frac{{\lambda D}}{2}}}

(d)  A simple harmonic motion with a period \displaystyle \sqrt{{3\lambda D}}

Ans.  (b)

Q.10

A particle executes linear simple harmonic motion with an amplitude of 2 cm. When the particle is at 1 cm from the mean position the magnitude of its velocity is equal to that of its acceleration. Then its time period in second is:

(a)      \displaystyle {{\cos }^{{1}}}\sqrt{{\frac{{12}}{{50}}}}   

(b)      \displaystyle \frac{1}{{\sqrt{2}}}m/{{s}^{2}}\,\,towards\,\,northeast           

(c)      \displaystyle \frac{1}{{\sqrt{2}}}m/{{s}^{2}}\,\,towards\,\,northwest          

(d)      \displaystyle 1\text{/}2\,\,m/{{s}^{2}}\,\,towards\,\,northwest

Ans.  (c)

Q.11

The speed (v) of a particle moving along a straight line, when it is at a distance (x) from a fixed point on the line, is given v2 = 144 – 9x2. Select wrong alternate:

(a)  Displacement of the particle £ distance moved by it

(b)  The magnitude of acceleration at a distance 3 units from the fixed point is 27 units

(c)   The motion is simple harmonic with \displaystyle \frac{{{{E}^{2}}}}{{{{\mu }_{0}}}} units

(d)  The maximum displacement from the fixed point is 4 units

Ans.  (c) 

Q.12

A body executes SHM whose period is 16 s. Two seconds after it passes the equilibrium position, its velocity is 1 ms-1. The amplitude of SHM is:

(a)  6.3 m                   (b)  1.8 m              (c)     3.6 m                (d)      2.4 m

Ans.  (c)

Q.13

For a particle in SHM, if the amplitude of the displacement is a and the amplitude of velocity is v, the amplitude of acceleration is

(a)    va 

(b)    \frac{\pi }{4}

(c)      \overset{\to }{\mathop{A}}\,\,\,and\,\,\overset{\to }{\mathop{B}}\,             

(d)      \overset{\to }{\mathop{A}}\,\cdot (\overset{\to }{\mathop{B}}\,\times \overset{\to }{\mathop{A}}\,)

Ans.  (d)

Q.14

Out of the following functions representing motion of a particle which represents SHM

  1. \overset{\to }{\mathop{A}}\,
  2. \overset{\to }{\mathop{B}}\,
  3. |\overset{\to }{\mathop{A}}\,+\overset{\to }{\mathop{B}}\,|=|\overset{\to }{\mathop{A}}\,-\overset{\to }{\mathop{B}}\,|
  4. \overset{\to }{\mathop{A}}\,=3\hat{i}+4\hat{j}+5\hat{k}

(a) only IV does not represent SHM                       

(b)  I and III                            

(c)  I and II                                                                         

(d)  only I

Ans.  (b)

Q.15

The displacement time graph of a particle executing SHM is shown in figure. Which of the following statement is false?

(a)  The acceleration is maximum at t = T

(b)  The force is zero at \displaystyle \frac{\pi }{{30\sqrt{2}}}cm/sa

(c)   The potential energy equals the total oscillation energy \displaystyle \vec{P},\,\,\vec{Q},\,\,and\,\,R

(d)  None of the above

Ans.  (d)