Video Lecture

Theory For Making Notes

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Practice Questions (Level-1)

Q.1

The resistance of a wire is 10W. Its length is increased by 10% by stretching. The new resistance will now be nearly

(a) 12 W           

(b) 1.2 W             

(c) 13 W         

(d) 11 W

Ans :  (a)

Q.2

The same mass of copper is drawn into two wires 1 mm and 2 mm thick. Two wires are connected in series and current is passed through them. Heat produced in the wire is in the ratio

(a) 2 : 1           

(b) 1 : 16                 

(c)  4 : 1               

(d) 16 : 1

Ans :   (d)

Practice Questions (Level-2)

Q.1

The figure shows two squares, X and Y, cut from a sheet of metal of uniform thickness t.  X and Y have sides of length L and 2L, respectively.        

The resistances \displaystyle {{R}_{x}} and \displaystyle {{R}_{y}} of the squares are measured between the opposite faces shaded in fig.  What is the value of \displaystyle {{R}_{x}}/{{R}_{y}}?

(a) 1/4       

(b)1/2         

(c) 1               

(d) 2

Ans.  (c)

Q.2

The plot represents the flow of current through a wire at three different times.  The ratio of charges flowing through the wire at different times is

(a)    2 : 1 : 2                 

(b)   1 :  3 : 3            

(c)   1 : 1 : 1             

(d)   2 : 3 : 4

Ans.  (c)

Q.3

Resistance of a resistor at temperature tºC is \displaystyle {{R}_{t}}={{R}_{0}}\left( {1+\alpha t+\beta {{t}^{2}}} \right), where \displaystyle {{R}_{0}} is the resistance at 0ºC. The temperature coefficient of resistance at temperature tºC is         

(a)    \displaystyle \frac{{\left( {1+\alpha t+\beta {{t}^{2}}} \right)}}{{\alpha +2\beta t}}                                             

(b)    \displaystyle \left( {\alpha \,+\,2\beta t} \right)       

(c)    \displaystyle \frac{{\alpha \,+\,2\beta t}}{{\left( {1+\alpha t+\beta {{t}^{2}}} \right)}}                                    

(d)    \displaystyle \frac{{\alpha \,+\,2\beta t}}{{2\left( {1+\alpha t+\beta {{t}^{2}}} \right)}}

Ans.  (c)

Q.4

The masses of the three wire of copper are in the ratio 1 : 3 : 5.  And their lengths are in the ratio 5 : 3 : 1.  The ratio of their electrical resistance is        

(a)   1 : 3 : 5     

(b)   5 : 3 : 1

(c)   1 ; 15 : 125       

(d)   125 : 15 : 1

Ans.  (d)

Q.5

For a cell, a graph is plotted between the potential difference V across the terminals of the cell and the current I drawn from the cell (see in fig.) the emf and the internal resistance of the cell are E and r, respectively. Then  

(a)    \displaystyle E\,=\,2V,\,\,r\,=\,0.5\,\Omega                         

(b)    \displaystyle E\,=\,2V,\,\,r\,=\,0.4\,\Omega      

(c)    \displaystyle E\,>\,2V,\,\,r\,=\,0.5\,\Omega                         

(d)    \displaystyle E\,>\,2V,\,\,r\,=\,0.4\,\Omega

Ans.   (b)

Q.6

A potential divider is used to give outputs of 2V and 3V from a 5V source, as shown in fig. Which combination of resistances \displaystyle {{R}_{1}}, \displaystyle {{R}_{2}}and \displaystyle {{R}_{3}} gives the correct voltages ?

 

\displaystyle {{R}_{1}}k\Omega

\displaystyle {{R}_{2}}k\Omega

A \displaystyle {{R}_{3}}k\Omega

(a)

1

1

2

(b)

2

1

2

(c)

3

2

2

(d)

3

2

3

Ans.   (b)

Q.7

The temperature coefficient of resistance of conductor varies as \displaystyle \alpha \left( T \right)\,=\,3{{T}^{2}}+2T.  If \displaystyle {{R}_{0}} is resistance at T = 0 and R is resistance at T, then       

(a)    \displaystyle R\,=\,{{R}_{0}}\left( {6T+2} \right)                         

(b)    \displaystyle R\,=\,{{2}_{0}}\left( {3+2T} \right)

(c)  \displaystyle R\,=\,{{R}_{0}}\left( {1+{{T}^{2}}+{{T}^{3}}} \right)             

(d)    \displaystyle R\,=\,{{R}_{0}}\left( {1-T+{{T}^{2}}+{{T}^{3}}} \right)

Ans.  (c)

Q.8

A battery of emf E and internal resistance r is connected across a resistance R. Resistance R can be adjusted to any value greater than or equal to zero.  A graph is plotted between the current passing through the resistance (I) and potential difference (V) across It.  Select the correct alternatives.        

(a) Internal resistance of the battery is 5 \displaystyle \Omega     

(b) Emf of the battery is 10 V                

(c) Maximum current that can be taken from the battery is 2A.

(d) Al the above

Ans. (d)

Q.9

A conductor of resistivity \displaystyle \rho and resistance R, as shown in the figure, is connected across a battery of emf V. Its radius varies from a at left end to b at right end.  The electric field at a point P at distance x from   left end of it is        

(a)      \displaystyle \frac{{2V{{l}^{2}}\rho }}{{\pi R{{{\left[ {la+\left( {b-a} \right)x} \right]}}^{2}}}} 

(b)      \displaystyle \frac{{V{{l}^{2}}\rho }}{{\pi R{{{\left[ {la+\left( {b-a} \right)x} \right]}}^{2}}}}

(c)      \displaystyle \frac{{V{{l}^{2}}\rho }}{{2\pi R{{{\left( {la+\left( {b-a} \right)x} \right)}}^{2}}}} 

(d)      none of these

Ans.  (b)

Q.10

Two long coaxial and conducting cylinders of radius a and b are separated by a material of conductivity and a constant potential difference V is maintained between them by a battery. Then the current per unit length of the cylinder flowing from one cylinder to the other is          

(a)    \displaystyle \frac{{4\pi \sigma }}{{\ell b\left( {b/a} \right)}}

(b)    \displaystyle \frac{{4\pi \sigma }}{{\left( {b/a} \right)}}V     

(c)    \displaystyle \frac{{2\pi \sigma }}{{\ell n\left( {b/a} \right)}}V      

(d) \displaystyle \frac{{2\pi \sigma }}{{\left( {b+a} \right)}}V

Ans.  (c)

Q.11

A cylindrical tube of length l has an inner radius a and an outer radius b. The resistivity is . What is the resistance between the ends?

(a)    \displaystyle R=\frac{{\rho l}}{{\pi ({{b}^{2}}-{{a}^{2}})}}    

(b)    R=\frac{{\rho l}}{{{{\pi }^{2}}(b-a)}} 

(c)    R=\frac{{2\rho l}}{{3{{\pi }^{2}}(2b-a)}}  

(d)    none

Ans.  (a)

Q.12

A cylindrical rod of silicon has a length of 1 cm and a radius of 2mm. What is the current when a potential difference of 120V is applied across the ends? (Take SI = 2200m).

(a)1.345 mA         (b) 6.85 × 10–5A               (c)645mA              (d) none

Ans.  (b)

Q.13

The resistance of a copper wire is 0.8 \displaystyle \Omega at 20°C. When it is placed in an oven, its resistance is 1.2. What is the temperature of the oven? Thermal coefficient of resistance of copper is \displaystyle {{\alpha }_{{Cu}}}= 3.9 × 10–3/°C

(a)  134°C             (b) 214°C                (c)178°C                    (d) 128°C

Ans.   (d)